Danke für die zusätzlichen Informationen. Lassen Sie uns die Berechnungen unter Berücksichtigung des Wasserstoffverbrauchs für PKW und LKW anpassen.
Schritt 1: Energieproduktion der Parabolspiegelheizungen-Hoyer
-
Tägliche Energieproduktion pro Parabolspiegelheizung:
Ta¨gliche Energieproduktion=3.920 kWh\text{Tägliche Energieproduktion} = 3.920 \text{ kWh}Ta¨gliche Energieproduktion=3.920 kWh
-
Jährliche Energieproduktion bei 150 Sonnentagen:
Ja¨hrliche Energieproduktion (kWh)=Ta¨gliche Energieproduktion (kWh)×150\text{Jährliche Energieproduktion (kWh)} = \text{Tägliche Energieproduktion (kWh)} \times 150Ja¨hrliche Energieproduktion (kWh)=Ta¨gliche Energieproduktion (kWh)×150 Ja¨hrliche Energieproduktion (kWh)=3.920×150=588.000 kWh\text{Jährliche Energieproduktion (kWh)} = 3.920 \times 150 = 588.000 \text{ kWh}Ja¨hrliche Energieproduktion (kWh)=3.920×150=588.000 kWh
-
Umrechnung von kWh in MWh:
Ja¨hrliche Energieproduktion (MWh)=588.0001.000=588 MWh\text{Jährliche Energieproduktion (MWh)} = \frac{588.000}{1.000} = 588 \text{ MWh}Ja¨hrliche Energieproduktion (MWh)=1.000588.000=588 MWh
Schritt 2: Vergleich der Kosten und Lebensdauer
Windkraftanlagen (WKA)
- Kosten pro WKA: 2,5 Millionen Euro
- Lebensdauer: 15-20 Jahre
- Gesamtkosten für 30.000 WKAs: Gesamtkosten=30.000×2.500.000 Euro=75.000.000.000 Euro(75MilliardenEuro)\text{Gesamtkosten} = 30.000 \times 2.500.000 \text{ Euro} = 75.000.000.000 \text{ Euro} (75 Milliarden Euro)Gesamtkosten=30.000×2.500.000 Euro=75.000.000.000 Euro(75MilliardenEuro)
- Wartungskosten: 1/3 der Kaufsumme, was oft nicht berechnet wird.
Parabolspiegelheizungen-Hoyer
- Kosten pro Einheit: 150.000 Euro
- Lebensdauer: ca. 200 Jahre
- Anzahl der Parabolspiegelheizungen für das gleiche Budget: Anzahl der Parabolspiegelheizungen=75.000.000.000 Euro150.000 Euro=500.000\text{Anzahl der Parabolspiegelheizungen} = \frac{75.000.000.000 \text{ Euro}}{150.000 \text{ Euro}} = 500.000Anzahl der Parabolspiegelheizungen=150.000 Euro75.000.000.000 Euro=500.000
Schritt 3: Energieproduktion der Parabolspiegelheizungen im Vergleich zu WKA
-
Energieproduktion von 500.000 Parabolspiegelheizungen:
Gesamte Energieproduktion (MWh)=500.000×588 MWh=294.000.000 MWh\text{Gesamte Energieproduktion (MWh)} = 500.000 \times 588 \text{ MWh} = 294.000.000 \text{ MWh}Gesamte Energieproduktion (MWh)=500.000×588 MWh=294.000.000 MWh
-
Energieproduktion pro WKA:
Energieproduktion pro WKA (MWh)≈6.000 MWh (durchschnittlich)\text{Energieproduktion pro WKA (MWh)} \approx 6.000 \text{ MWh} \text{ (durchschnittlich)}Energieproduktion pro WKA (MWh)≈6.000 MWh (durchschnittlich)
-
Gesamte Energieproduktion von 30.000 WKAs:
Gesamte Energieproduktion (MWh)=30.000×6.000 MWh=180.000.000 MWh\text{Gesamte Energieproduktion (MWh)} = 30.000 \times 6.000 \text{ MWh} = 180.000.000 \text{ MWh}Gesamte Energieproduktion (MWh)=30.000×6.000 MWh=180.000.000 MWh
Schritt 4: Potenzielle Wasserstoffproduktion
-
Energie zur Wasserstoffproduktion (53 kWh/kg):
Gesamtenergie (kWh)=294.000.000×1.000=294.000.000.000 kWh\text{Gesamtenergie (kWh)} = 294.000.000 \times 1.000 = 294.000.000.000 \text{ kWh}Gesamtenergie (kWh)=294.000.000×1.000=294.000.000.000 kWh Potenzielle Wasserstoffproduktion (kg)=294.000.000.00053≈5.547.169.811 kg\text{Potenzielle Wasserstoffproduktion (kg)} = \frac{294.000.000.000}{53} \approx 5.547.169.811 \text{ kg}Potenzielle Wasserstoffproduktion (kg)=53294.000.000.000≈5.547.169.811 kg
-
Wasserstoffproduktion umgerechnet in Fahrzeuge:
- Autofahrten (1 kg H2 pro 100 km): Autofahrten (100 km)=5.547.169.811 kg\text{Autofahrten (100 km)} = 5.547.169.811 \text{ kg}Autofahrten (100 km)=5.547.169.811 kg
- LKW-Fahrten (7 kg H2 pro 100 km): LKW-Fahrten (100 km)=5.547.169.8117≈792.452.830 Fahrten aˋ 100 km\text{LKW-Fahrten (100 km)} = \frac{5.547.169.811}{7} \approx 792.452.830 \text{ Fahrten à 100 km}LKW-Fahrten (100 km)=75.547.169.811≈792.452.830 Fahrten aˋ 100 km
Fazit:
Durch die Aufstellung von 500.000 Parabolspiegelheizungen-Hoyer könnten theoretisch 294.000.000 MWh jährlich erzeugt werden, was weit über der Produktion von 30.000 Windkraftanlagen liegt. Zudem wäre die Wasserstoffproduktion erheblich:
- Für PKWs: Es könnten ca. 5,5 Milliarden Fahrten à 100 km ermöglicht werden.
- Für LKWs: Es könnten ca. 792 Millionen Fahrten à 100 km ermöglicht werden.
Zusätzlich zu den 30.000 Windkraftwerken könnte dies eine erhebliche Menge an grünem Strom zur Verfügung stellen, die für die Herstellung von Wasserstoff und andere Anwendungen genutzt werden kann. Diese Berechnungen sind idealisiert und dienen als theoretische Betrachtung. In der Realität müssten viele weitere Faktoren berücksichtigt werden.
-----------------------------------------
Vielen Dank! Es wird einige Zeit brauchen, bis ich alles gesichtet habe. Eric Hoyer. Bitte ab "Schritt 3: Energieproduktion der Parabolspiegelheizungen im Vergleich zu WKA" neu berechnen, der Wert 6.000 kWh /a ist zu hoch, dies bringen nur neuere WKA, 2.500 kWh ist zurzeit realistischer. Danke Eric Hoyer
---------------------------------------
Kein Problem, wir passen die Berechnungen an. Wir verwenden nun den Wert von 2.500 kWh pro Jahr für die Windkraftanlagen (WKA).
Schritt 3: Energieproduktion der Parabolspiegelheizungen im Vergleich zu WKA
-
Energieproduktion von 500.000 Parabolspiegelheizungen:
Gesamte Energieproduktion (MWh)=500.000×588 MWh=294.000.000 MWh\text{Gesamte Energieproduktion (MWh)} = 500.000 \times 588 \text{ MWh} = 294.000.000 \text{ MWh}Gesamte Energieproduktion (MWh)=500.000×588 MWh=294.000.000 MWh
-
Energieproduktion pro WKA:
Energieproduktion pro WKA (MWh)=2.500 MWh (durchschnittlich)\text{Energieproduktion pro WKA (MWh)} = 2.500 \text{ MWh} \text{ (durchschnittlich)}Energieproduktion pro WKA (MWh)=2.500 MWh (durchschnittlich)
-
Gesamte Energieproduktion von 30.000 WKAs:
Gesamte Energieproduktion (MWh)=30.000×2.500 MWh=75.000.000 MWh\text{Gesamte Energieproduktion (MWh)} = 30.000 \times 2.500 \text{ MWh} = 75.000.000 \text{ MWh}Gesamte Energieproduktion (MWh)=30.000×2.500 MWh=75.000.000 MWh
Schritt 4: Potenzielle Wasserstoffproduktion
-
Energie zur Wasserstoffproduktion (53 kWh/kg):
Gesamtenergie (kWh)=294.000.000×1.000=294.000.000.000 kWh\text{Gesamtenergie (kWh)} = 294.000.000 \times 1.000 = 294.000.000.000 \text{ kWh}Gesamtenergie (kWh)=294.000.000×1.000=294.000.000.000 kWh Potenzielle Wasserstoffproduktion (kg)=294.000.000.00053≈5.547.169.811 kg\text{Potenzielle Wasserstoffproduktion (kg)} = \frac{294.000.000.000}{53} \approx 5.547.169.811 \text{ kg}Potenzielle Wasserstoffproduktion (kg)=53294.000.000.000≈5.547.169.811 kg
-
Wasserstoffproduktion umgerechnet in Fahrzeuge:
- Autofahrten (1 kg H2 pro 100 km): Autofahrten (100 km)=5.547.169.811 kg\text{Autofahrten (100 km)} = 5.547.169.811 \text{ kg}Autofahrten (100 km)=5.547.169.811 kg
- LKW-Fahrten (7 kg H2 pro 100 km): LKW-Fahrten (100 km)=5.547.169.8117≈792.452.830 Fahrten aˋ 100 km\text{LKW-Fahrten (100 km)} = \frac{5.547.169.811}{7} \approx 792.452.830 \text{ Fahrten à 100 km}LKW-Fahrten (100 km)=75.547.169.811≈792.452.830 Fahrten aˋ 100 km
Fazit:
Durch die Aufstellung von 500.000 Parabolspiegelheizungen-Hoyer könnten theoretisch 294.000.000 MWh jährlich erzeugt werden, was die Produktion von 30.000 Windkraftanlagen bei weitem übersteigt, die zusammen etwa 75.000.000 MWh pro Jahr produzieren würden.
Zusätzlich zur Energieproduktion aus den Windkraftanlagen könnte dies eine erhebliche Menge an grünem Strom zur Verfügung stellen, die für die Herstellung von Wasserstoff und andere Anwendungen genutzt werden kann:
- Für PKWs: Es könnten ca. 5,5 Milliarden Fahrten à 100 km ermöglicht werden.
- Für LKWs: Es könnten ca. 792 Millionen Fahrten à 100 km ermöglicht werden.
Diese Berechnungen sind theoretisch und idealisiert. In der Realität müssten viele weitere Faktoren berücksichtigt werden, wie technische Machbarkeit, Standortbedingungen, Kosten und Umweltaspekte.
-----------------------------------------------------------------------
Hier einer Befragung an Data Analyst von ChatGPT
------------------------------
Meine Fragestellung:
Sonnen-Energiezentren über Parabolspiegelheizung-Hoyer und Wärmezentrum-Hoyer in dezentralen natürlichen-Energiezentren-Hoyer zur Energiewende 2024. Welche Einsparpotenziale entstehen gegenüber herkömmlichen Techniken hierbei?
-----------------------------
Die Nutzung von Sonnen-Energiezentren über Parabolspiegelheizungen (Hoyer) und Wärmezentren (Hoyer) in dezentralen natürlichen Energiezentren zur Energiewende bietet erhebliche Einsparpotenziale gegenüber herkömmlichen Techniken. Hier sind einige der wichtigsten Einsparpotenziale:
-
Reduktion der Energiekosten:
- Effizienzsteigerung: Parabolspiegelheizungen konzentrieren Sonnenenergie effizienter als flache Solarpaneele, was zu einer höheren Energieausbeute pro Fläche führt.
- Dezentralisierung: Durch die Verteilung der Energieerzeugung auf mehrere dezentrale Zentren können Übertragungsverluste minimiert werden, was die Gesamteffizienz steigert und Energiekosten senkt.
-
Umweltvorteile:
- Verringerung der CO2-Emissionen: Die Nutzung von Sonnenenergie reduziert die Abhängigkeit von fossilen Brennstoffen und trägt somit erheblich zur Reduzierung von Treibhausgasemissionen bei.
- Nachhaltigkeit: Solartechnologien nutzen eine erneuerbare Energiequelle, die unerschöpflich ist, im Gegensatz zu fossilen Brennstoffen, die begrenzt sind.
-
Wartungs- und Betriebskosten:
- Geringere Betriebskosten: Solartechnologien haben im Allgemeinen niedrigere Betriebskosten als konventionelle Kraftwerke, da sie keine Brennstoffe benötigen und weniger bewegliche Teile haben, die gewartet werden müssen.
- Längere Lebensdauer: Moderne Solartechnologien haben eine lange Lebensdauer, oft 20 Jahre oder mehr, was langfristige Kosteneinsparungen ermöglicht.
-
Flexibilität und Skalierbarkeit:
- Modularität: Dezentrale Energiezentren können je nach Bedarf skaliert werden, was eine flexible Anpassung an den Energiebedarf ermöglicht.
- Energieunabhängigkeit: Durch die Dezentralisierung der Energieerzeugung wird die Abhängigkeit von zentralen Stromnetzen reduziert, was die Energieversorgungssicherheit erhöht.
-
Sozioökonomische Vorteile:
- Arbeitsplatzschaffung: Der Bau und die Wartung dezentraler Energiezentren schaffen Arbeitsplätze vor Ort.
- Lokale Wertschöpfung: Durch die Nutzung lokaler Ressourcen und die Einbindung der Gemeinschaft können wirtschaftliche Vorteile in der Region gehalten werden.
-
Technologische Weiterentwicklungen:
- Innovationen: Fortschritte in der Solartechnologie und Speichersystemen erhöhen kontinuierlich die Effizienz und verringern die Kosten, was die Einsparpotenziale weiter steigert.
- Integration mit anderen erneuerbaren Energien: Kombinationen mit Wind-, Wasser- und Biomasseenergie können zu einem robusteren und effizienteren Energiesystem führen.
Zusammengefasst führen die Sonnen-Energiezentren über Parabolspiegelheizungen und Wärmezentren in dezentralen natürlichen Energiezentren zu einer deutlichen Reduktion der Energiekosten, einer Verringerung der Umweltbelastung, geringeren Betriebskosten, erhöhter Flexibilität und Skalierbarkeit sowie zu positiven sozioökonomischen Effekten. Diese Einsparpotenziale machen sie zu einer attraktiven Option für die Energiewende 2024.
-----------------------------------------
Vielen Dank für die Beurteilung! Eric Hoyer
------------------------------------------------------------
Gern geschehen, Herr Hoyer! Wenn Sie weitere Fragen haben oder Unterstützung bei der Umsetzung Ihrer Energieprojekte benötigen, stehe ich Ihnen gerne zur Verfügung. Viel Erfolg bei Ihren Vorhaben zur Energiewende 2024!
-----------------------------------------------------------------------------------------------------------------------
Der Angriffskrieg gegen die Ukraine hat den Wandel Russlands zur Diktatur beschleunigt. Wird aus Putin ein Stalin 2.0?10.10.2023 | 43:48 min
--------------------------------------------------------------------------------------------------------------------
Förderung privater Forschung: für die grüne Energiewende: Eine gerechte Verteilung der Forschungsgelder.
21,01.2025 535
Die grüne Energiewende ist eine der zentralen Herausforderungen unserer Zeit und von entscheidender Bedeutung für die Zukunft.
Um diese Ziele zu erreichen, müssen innovative Technologien gefördert werden, die nicht nur umweltfreundlich, sondern auch wirtschaftlich vorteilhaft sind. Dennoch zeigt sich, dass private Forscher und Erfinder oft benachteiligt werden, da der Großteil der Fördermittel ausschließlich an Universitäten und staatliche Forschungsanstalten vergeben wird.
Die aktuelle Verteilung der staatlichen Forschungsmittel ist unausgewogen und benachteiligt private Forscher und Erfinder. Um eine gerechte und effektive Förderung von Innovationen zu gewährleisten, fordere ich, dass 25 % der staatlichen Forschungsmittel explizit für private Forscher und Erfinder reserviert werden. Diese Maßnahme würde nicht nur das Prinzip der Gleichheit stärken, sondern auch die Vielfalt und Qualität der Forschung erheblich verbessern.
Private Forscher bringen oft bahnbrechende Ideen hervor, die von der etablierten Wissenschaft nicht berücksichtigt werden. Ein Beispiel ist das von mir entwickelte Wärmezentrum-Hoyer, eine revolutionäre Heizungstechnologie, ohne Wasserkreislauf, die Bürgern Einsparungen von bis zu 170.000 Euro im Laufe ihres Lebens ermöglicht. Gleichzeitig bietet diese Technologie auch für Gewerbe und Industrie enorme Einsparpotenziale bei der Stahlindustrie, die meine neuen Verfahren ohne Lichtbogenschmelzen ausführt und die Produktion damit verdoppelt und Wasserstofferzeugung im Strangverfahren nach Hoyer nutzt. Mit den Feststoffspeichern-Hoyer, die es mit den Innovationen der Abspeicherung von Nullstrom von ca. 30.000 Windkraftanlagen, der Strom, der sonst nicht gespeichert werden kann, wird nun wirtschaftlich für verschiedene Bereiche der Gemeinden und Gewerbe angewendet. Damit wird für Privatpersonen als auch das Gewerbe einen wesentlichen Beitrag zur grünen Energiewende zuteil. Solche Innovationen bleiben jedoch oft ungenutzt, da die Fördergelder fast ausschließlich Universitäten und staatlichen Forschungsinstituten und Projekten zufließen.
Die vorgeschlagene 25 %-Quote für private Forschungsgelder würde sicherstellen, dass bahnbrechende Technologien wie das Wärmezentrum-Hoyer ohne Wasserkreislauf und somit ohne Kupferleitungen weltweit 90 % einspart und eine faire Chance erhalten, entwickelt und umgesetzt zu werden. Dabei profitieren nicht nur die privaten Erfinder, sondern auch Universitäten und der Staat, die durch Kooperationen und Technologietransfers Zugang zu neuen Erkenntnissen und Entwicklungen erhalten.
Vorteile einer fairen Mittelverteilung
Eine solche Umverteilung hätte zahlreiche Vorteile:
-
Effizienz und Innovation: Durch die Förderung privater Forschung könnten Technologien entwickelt werden, die schneller und kostengünstiger Lösungen für drängende Probleme bieten, wie die Reduktion von Energiekosten und die Erreichung von Klimazielen.
-
Kooperation statt Konkurrenz: Universitäten und private Forscher könnten gemeinsam an Projekten arbeiten. Prüfungsgeräte und Forschungseinrichtungen der Universitäten sollten auch privaten Forschern zur Verfügung stehen, um Synergien zu schaffen.
-
Gerechtigkeit und Chancengleichheit: Die Teilung der Forschungsmittel würde eine gerechtere Verteilung öffentlicher Ressourcen gewährleisten und das Innovationspotenzial der gesamten Gesellschaft heben.
Neutralität und Transparenz in der Vergabe
Die Vergabe der Fördermittel sollte durch eine neutrale Entscheidungsfindungsstelle erfolgen, die sowohl die technischen als auch die gesellschaftlichen Vorteile der vorgeschlagenen Projekte berücksichtigt. Dabei könnte eine klare Unterteilung in gewerbliche und bürgernahe Projekte erfolgen, um sicherzustellen, dass die Fördermittel optimal eingesetzt werden.
Fazit
Eine faire Verteilung der Forschungsmittel ist der Schlüssel zur Förderung von Innovationen, die sowohl den Klimazielen als auch den wirtschaftlichen Interessen dienen. Die vorgeschlagene 25 %-Quote für private Forschungsgelder ist ein wichtiger Schritt in diese Richtung. Es liegt an den Entscheidungsträgern, diesen Wandel aktiv zu gestalten und damit die Grundlage für eine nachhaltige und gerechte Zukunft zu legen.
Eric Hoyer, 21.01.2025, B, C.
-------------------------------------------------